An RNA motif advances transcription by preventing Rho-dependent termination.

نویسندگان

  • Anastasia Sevostyanova
  • Eduardo A Groisman
چکیده

The transcription termination factor Rho associates with most nascent bacterial RNAs as they emerge from RNA polymerase. However, pharmacological inhibition of Rho derepresses only a small fraction of these transcripts. What, then, determines the specificity of Rho-dependent transcription termination? We now report the identification of a Rho-antagonizing RNA element (RARE) that hinders Rho-dependent transcription termination. We establish that RARE traps Rho in an inactive complex but does not prevent Rho binding to its recruitment sites. Although translating ribosomes normally block Rho access to an mRNA, inefficient translation of an open reading frame in the leader region of the Salmonella mgtCBR operon actually enables transcription of its associated coding region by favoring an RNA conformation that sequesters RARE. The discovery of an RNA element that inactivates Rho signifies that the specificity of nucleic-acid binding proteins is defined not only by the sequences that recruit these proteins but also by sequences that antagonize their activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncanonical interactions in the management of RNA structural blocks by the transcription termination rho helicase.

To trigger transcription termination, the ring-shaped RNA-DNA helicase Rho from Escherichia coli chases the RNA polymerase along the nascent transcript, starting from a single-stranded C-rich Rut (Rho utilization) loading site. In some instances, a small hairpin structure divides harmlessly the C-rich loading region into two smaller Rut subsites, best exemplified by the tR1 terminator from phag...

متن کامل

RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader

Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it i...

متن کامل

Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex.

To terminate transcription in E. coli, Rho protein binds an RNA loading site on the nascent transcript, translocates 5'--> 3' along the RNA in an ATP-driven process, and, upon reaching the transcription elongation complex, brings about RNA release. Thus, the Rho-dependent termination process can be viewed, in part, as a kinetic competition between the rate of transcript elongation by RNA polyme...

متن کامل

Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.

NusA is an essential protein that binds to RNA polymerase and also to the nascent RNA and influences transcription by inducing pausing and facilitating the process of transcription termination/antitermination. Its participation in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known. We hypothesized that, because both Rho and NusA...

متن کامل

Mechanisms of Bacterial Transcription Termination: All Good Things Must End.

Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 50  شماره 

صفحات  -

تاریخ انتشار 2015